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IV. CoNcLUSIONS

Useful oscillographic response plots of a microwave
network have been obtained by computer simulation,
using frequency-domain data measured with a computer-
controlled network analyzer. The technique has a short
time resolution, is highly sensitive, and .provides quan-
titative results useful in a variety of ways. A major ap-
plication is in the analysis of impedance data at the input
of transmission networks, where it serves as a quanti-
tatively interpretable time-domain reflectometer. It may
also be used to measure small reflection coefficients of
individual parts of multiple-section networks, which are
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physically inseparable both in the time domain and the
frequency domain.
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De-EmbCC!CIing and Unterminating

RONALD F. BAUER, uEMBER, 1EEE, AND PAUL PENFIELD, JR., FELLOW, IEEE

Abstract—De-embedding is the process of deducing the im-
pedance of a device under test from measurements made at a dis-
tance, when the electrical properties of the intervening structure
are known. Unterminating is the process of deducing the electrical
properties of the intervening structure from a series-of measurements
with known embedded devices. The mathematical steps necessary
for de-embedding and unterminating are reviewed, and a technique
is presented fof unterminating with theoretically redundant meas-
urements in order fo minimize the effect of experimental erfors.

I. INTRODUCTION

T miecrowave frequencies it is often impossible to
directly measure the impedance (or admittance or
reflection coefficient) of devices such as diodes or transis-
tors. Instead, measurements are made at, and referred to,
sorhe reference plane physically removed from the device.
The device is then said to be “embedded” in the inter-
vening structure. If the device under test is a two-terminal
device, then the “embedding network” may usefully be
regarded as a two-port network 9%z, with the measurement
plane at the input and the device under test terminating

the output. This is shown in Fig. 1.
A related problem is that of characterizing, for a working
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Fig. 1. Normal measurement situation. Characteristics of the
device under test can only be measured as they appear outside
the embedding network g.

circuit, the region surrounding a device such as a diode.
For example, one might wish to know the impedance seen
by the diode, or the coupling between the diode and the
circuit input or output. It is often impossible to make
measurements at the physical location of the device, so
what is needed is a characterization of the structure be-
tween the device and a convenient measurement plane.
Again it is useful to consider the device as “embedded’ in
the intervening structure, which in the case of a diode may
be regarded as a two-port network 9. Fig. 1 is again
relevant. :

To fix ideas in this paper, we shall consider mainly
impedance (instead of admittance or reflection coef-
ficient) measurements, and call the device under test a
“diode.” A

There are two distinet problems. One is, given the
measured impedance at the input of the two-port network,
to deduce the impedance of the diode. This process,
known as “de-embedding,” is straightforward, once the
embedding network is known, and is discussed in Section
II. The other more difficult problem is to characterize the
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embedding network 9z experimentally from measure-
ments. Because measurements at the output of 9z are
impossible, this characterization must be done from
measurements of input impedance alone, made when 9z
is terminated by known loads at the output. The process,
known as ‘“‘unterminating,” is discussed in Sections
ITI-VIII.

II. De-EMBEDDING

The de-embedding procedure is straightforward, pro- .

vided the embedding network is known. Let us suppose
a load with unknown impedance Z;, terminates the output
of the embedding network, and the resulting input im-
pedance Z1y is measured.

One direct way to de-embed is to solve the well-known
formula for input impedance

Z]ZZZI
Zin = Zu — =22 1
W= M
for the unknown Z;:
Z12221
Zp = ———— — Zo. 2
T 2y — Zix 2 @

Similar formulas ean easily be derived for admittance or
reflection coefficient.

A convenient way to view the process is to imagine the
original network 9z, as terminated, forming the termin-
ation of a hypothetical two-port network 9t;, as in Fig. 2.
If 91; is the inverse of 91z with respect to caseading, then
the resulting input impedance is equal to Z;. This inverse
network is easily found if 97z is known. In terms of the
ABCD parameters, 9 has an ABCD matrix equal to the
matrix inverse of the A BCD matrix of 9%g. The impedance
matrix of 97 is found by multiplying by —1 and replacing
subscripts 1 by 2 and vice versa. In MaRTHA notation [17,
if the original embedding network is denoted NE, then
Mris (—1) ZSCALE WN NE.

ITII. UNTERMINATING

In principle there are many ways of characterizing the
two-port embedding network. In practice the most
common are: (1) a lumped and/or distributed equivalent
circuit; (2) analytical expressions for the two-port
parameters, perhaps found through solving Maxwell’s
equations; (3) analytical or polynomial approximations
for the two-port parameters; (4) measured numerical

Original
Network
A
Cascade Inverse Embedding ;i
Network Network ?,‘,’,‘Qﬁ,‘
72y 72, r Test
13
2,7 7

Fig. 2. When 911 is the cascade inverse of the embedding network
Mg, then the input impedance is the device impedance.
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values for the two-port parameters, tvpically in the form
of a table with entries at several frequencies; and (5)
two or more such networks wired together.

In this paper we discuss a technique, known as ‘“‘un-
terminating,” to deduce numerical values for the two-port
parameters from measurements made solely at the input
of the embedding network. This technique has both theo-
retical and practical limitations. A technique is described
for wutilizing theoretically redundant information to
improve accuracy. A similar approach, but restricted
to the case where the variable load impedance is purely
reactive, was used by Kajfez [27], who was particularly
interested in the de-embedding of varactors. It should be
noted that when (as in the case considered by Kajfez)
the variable load is reactive, the locus of input impedance
is a circle in the complex plane, whereas in the general case
(considered here) the locus need not be a circle. Thus this
technique is applicable in cases where “eyeball” fitting of a
circle is not a possible technique.

IV. TaHEORETICAL Basis AND FUNDAMENTAL LIMITATIONS

To fix ideas consider the impedance matrix of the
embedding network 9z, with elements Zu, Zy;, Zun, and
Zy. The network need not be lossless, passive, or reciprocal.

The technique for unterminating is based on (1), which
can also be written as

Az + ZnZ
ZIN _ Z + n&4rL (3)
Zn + Z1
where Az = ZuZyw — ZinZxn. The unterminating pro-

cedure is to measure Zyy as a function of frequency for a
set of known load impedances Zi, and then deduce
Zy, Zyp, and Az. Two or fewer measurements are in-
sufficient; three independent measurements are necessary
and sufficient; and four or more measurements are re-
dundant. It is a simple algebraic task to find explicit
formulas for Zu, Zs, and Az from (3) for three inde-
pendent pairs (ZIN17 ZLl), (Z;[Ng, ZL;)), and (ZINg, ZL3)~
However, use of these formulas is not recommended since
it is difficult to avoid the effects of experimental ecrrors.
A technique to utilize redundant measurements to reduce
experimental error is discussed in Section VI.

Although a two-port network has four elements in its
impedance matrix, the two elements Z1; and Zy appear in
(1) only in the form of the product Z13Zs. Driving-point
measurements of a terminated two-port network are
inherently incapable of determining separately Z;, and
Za. If 95 is known to be reciprocal, then Zys = Zs and,
except for a sign ambiguity, Z1, and Z can be determined.
The physical effect of this sign ambiguity is illustrated in
Fig. 3. If one choice of sign corresponds to a network 3,
then the other choice corresponds to the network 9t
cascaded with a polarity reverser. It is obvious that these
two networks cannot be distinguished on the basis of
driving-point measurements.

On the other hand, if the embedding network is non-
reciprocal, not even the magnitudes of Z1» and Zx can be
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Fig. 3. Effect of sign ambiguity in Z:, and Zs, if only the product
Zy12Z 9 is known. Both of the networks above are reciprocal, but
differ in the sign of Z12 and Z.

determined without some assumption. Fortunately, how-
ever, the inherent impossibility of finding separately Zi,
and Zy does not affect the use of the resulting network
for de-embedding or determining output impedance, as
can be seen from Z expressed in terms of Zin, and Zour
expressed in terms of the generator impedance Zg:

ZIZZ21 —'AZ + Z22ZIN
Zy=—7 = 4
- 2 = O I @
Z yAYA
ZOUT = T 12221 B Az + ZowZe (5)

 Zu+Ze  Zu+ Ze

In both forms only the product Z;Zs appears. This means
that any choice of Zi, and Zy such that their product is
correct, is adequate. It is usually convenient to choose
Zy = Zy even for nonreciprocal networks, and to choose
the sign resulting from the square root arbitrarily. This
means that (even for reciprocal networks) the resulting
network is, or may be, wrong, but in such a way that de-
embedding or determining the output impedance is still
possible.

This technique requires knowledge of the loads at the
time the input measurements are made. An important
limitation of the procedure is the fact that the supposedly
known loads often cannot be directly measured. Naturally,
the success of the unterminating operation is only as good
as the knowledge of the load impedances. For example,
taking values for the set of load impedances that are
consistently in error by an additive constant will intro-
duce a fictitious element in series with the output port of
the network defined by the untermination process. A set
of load impedances consistently in error by a multi-
plicative constant will introduce a fictitious ideal trans-
former across the output port. In some cases there is no
particular problem in determining the impedance of the
reference loads (for example, using the back-bias capaci-
tances of a diode, which are assumed to be the same as the
capacitances measured as a lower frequency [37]). In
other cases, however, some modeling effort must be taken
(for example, substituting for a diode package a series of
dielectric or conductive pieces with the same shape [4]),
and care must be exercised in selecting the reference loads
in order to preserve the desired bilinear relation between
ZIN and ZLI:SJ

V. ErrEcT oF EXPERIMENTAL KERROR

It was stated above that three input measurements are
necessary and sufficient for deducing the embedding net-
work. However, when only three measurements are used,
the technique is subject to difficulties arising from ex-

f
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| so-j30 30+j10

150 +j150

Fig. 4. Example embedding network. Zu; = 200 + 7120, Zs =
180 + 160, Z1z = Zn = 150 + 150, Az = 16800 + j8600.

TABLE 1
INPUT IMPEDANCES Zpy OF THE ExamPLE EMBEDDING NETWORK
Fic. 4 WaeN TERMINATED WITH REFERENCE Loaps Zrp AND
Inpur IMPEDANCES AFTER ADDING NOISE

zL ZIN ZIN + Noise

Real Imag. Real Imag. Real Imag.
10 0 83.31 -18.57 82.58 -18.05
25 0 93.53 -16.41 93.45 -16.34
75 0 120.6 - 6.621 120 - 7.521

100 0 130.8 - 1.154 131.1 - 0.7938
0 50 76.47 14,12 77.34 13.89
00 ~50 88.76 -62.02 88.8 ~61.35
50 50 102.6 13.3 101.6 12.41
50 -50 123.8 -39.23 123.9 -38.88

perimental error. The following simulated example shows
how important such considerations are.

The network shown in Fig. 4 was used as the embedding
network. The input impedance was calculated at one
frequency for eight different loads, namely, resistances of
10, 25, 75, and 100 Q, reactances equal to 750 and —750 £,
and impedances of 50 4 750 and 50 — 750 &. To simulate
experimental error each input impedance was perturbed
by adding an independent random resistance and random
reactance of maximum magnitude 1. The resulting
“noisy measurements” are shown in Table I. For sim-
plicity the eight load impedances were assumed to be
known exactly.

Any three of the eight pairs of Z; and “measured”
Zx can be selected for unterminating. Since there are 56
ways of selecting 3 objects from a set of 8, there are 56
different approximations of the embedding network.
Each of these was used to de-embed the input impedance
108.3 — j11.85 @ (which is the actual result of a 50-0
load). The 56 resulting estimates of the load impedance
71, are shown in Fig. 5. The scatter indicates the extent
of the error introduced by measurement errors of less than
1 Q. In a practical case it would not be evident which (if
any) of the 56 resulting networks was best.

What is needed is some way of averaging over the extra
measurements in order to improve the accuracy of the
embedding network characterization. In Section VI such a
technique is discussed. As a preview, the effect of using
this technique is shown in Table II. The mean and
standard deviation are given for the 56 load impedances
predicted using the embedding networks derived by taking
3 measurements at a time, the 70 predictions derived by
taking 4 out of the 8 measurements, the 56 predictions
based on 5 measurements, the 28 predictions based on 6
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Fig. 5. Plot of the load impedances obtained by de-embedding the
input impedance 108.3 — j11.8 © (Z1x of the network in Fig. 4
terminated in Zy = 50) using the 56 different descriptions of the
embedding network obtained using 3 noisy measurements at a
time from a set of 8.

TABLE 1I
AVERAGE AND STANDARD DEvVIATION OF L0oAD IMPEDANCES OBTAINED
BY De-EMBEDDING INPUT IMPEDANCE 108.3 — j11.8 @, UsiNG
EmBEDDING NETWORKS OBTAINED Using N Noisy
MEASUREMENTS AT A TIME FROM A SET oF KIGHT

Average Standard Deviation
N ReZ, In Zp Re 7 In Z;
3 50.80 .2116 1.199 1.1
4 50.63 0408 0.7046 0.6462
) 50.51 .01328 0.5576 0.4175
6 50.42 -.007462 0,4303 0.2525
7 50.35 -.02279 0.2883 0.1167
8 50.30 -.03362

measurements, the 8 predictions based on 7 measure-
ments, and the 1 prediction based on all 8 measurements.
It is apparent that as more measurements are used, the
scatter decreases and the prediction of the load im-
pedance becomes better.

VI. RECOMMENDED UNTERMINATION PROCEDURE

The procedure for unterminating presented here makes
use of all pairs of measurements and loads, with equal
weighting of importance (although it can easily be
modified to any desired unequal weighting). It is based on
the minimization of an error expression to obtain estimates
of the network parameters Zi;, Zs, and Az. An error ex-
pression that is quadratic in these parameters is used in
order to obtain explicit minimization formulas.

The error expression is derived by rearranging (3) to
obtain a linear equation in Zi, Zs, and Az:

ZnZy, — ZnZox + Az — ZiZix = 0. (6)

For any particular measurement—load pair, (6) will differ
from 0 by an amount ¢; due to measurement errors in
Zx: and/or uncertainty about the value of Zr,. Thus for
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each of the N measurement-load pairs
ZnZiy — ZowZin: + Az — ZpiZiw: = ¢

(i=172’3)"’7N)- (7)

An estimate of the network parameters can be obtained
by choosing Zy, Zs, and Az to minimize the squared
magnitudes of all expressions like (7). That is, the func-
tion

N N
de* = 3 l € |2 = 2 , ZnZy, — ZnZix,
=1 i=1
4+ Az — ZriZni 2 (8)
is to be minimized.
This problem can be expressed in matrix form as
Bt —a = ¢ 9)
where
P =1[Zu Zn Az]
o = [ZuZwa ZiZixe <+ ZinZinw]
[Zy  —Zma 1
Zy —Zme 1

en .

Then choosing for p, the parameter estimator, the value of
p that minimizes £'¢* gives

s, = [El 62 . e

B*Bp = B*'a (10)
where )
— . . " —
21 Z |2 — 2 Z1* N, DIV A%
=1 =1 =1
N N N
B*,B =1 - E Z Lot Z I AR |2 - Z Zni*
=1 =1 i=1
N N
E Zr: - E Zin; N
L =1 =1 ]
(11)
and
— —_
N
Z l VA |2Z1Nz
=1
N
B¥a =| — 2| Zwi [*Z1: (12)

i=1

N
Z ZLzZINz

4=l
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Two algorithms for computing Zy, Zas, and Az are
shown in Fig. 6. They are written in the language APL
and are intended for illustration only, although they can
actually be executed for real load and input impedances
(in that case the complex conjugate function CC is by-
passed). Practical programs based on the algorithms in
Fig. 6 are possible, but would be unnecessarily slow. It is
a simple matter to devise alternate algorithms that are
not as well suited for exposition, but better suited for
actual calculations.

Our goal, however, is not just to estimate the network
parameters. We would like to use them to estimate the
expected value of Z; from additional, or future, observa-
tions of Zin, or to estimate the expected value of Zour.
The equations for Z;, and Zour, (4) and (5), are nonlinear
in the network parameters. Thus they will not be un-
biased estimators. However, if the network parameters
are known with a small enough variance the bias in the
estimate of Z;, or Zour should be small. An example of the
use of this procedure is given in Section VIII.

VII. EXTENSIONS

This technique is also applicable to instances involving
admittance and reflection coefficient. Indeed, the input
admittance Yy as a function of the load admittance
Y. and admittance matrix is

Y12Y21
Y22 + YL ’

This has exactly the same form as (1), and therefore the
same procedure can be used without modification. In
particular, if measured Yin and Y values are used as an
argument for the function unT in Fig. 6, the function will
return the vector Yy, Yo, Ay.

The extension to reflection coefficients is almost as easy.
The input reflection coefficient I'yy in terms of the load
reflection coefficient T’y and seattering matrix S is

812821
ng - l/FL

YIN = Y11 —_— (13)

1-‘IN = Sll - (14)
which has a form similar to (1) except that —1/Ty
appears instead of Z;. Thus the same function UnT can
be used with reflection coefficient data provided that
instead of Zy, —1/Ty is used. The data are probably most
easily arranged as a vector of I'ry and I'z, but it is a simple
matter to write a function such as rors in Fig. 7 that can
be used to precondition the argument. Then, if the
vector DATA contains T'ry and T’z numbers, UNT FORS
paTa Wwill return a vector containing the scattering-
matrix values Sy, Sz, and As. In the example in Section
VIII, reflection coefficient data were actually used.

It is also possible to make use of data, if any, of output
impedance (or admittance or reflection coefficient) for a
given impedance Zg terminating the input. This is because
the output-impedance formula (5) can be transformed into
the form

V/ 12Z 21

—Z) = Zoy —
( G’) 11 Z22 _ ZOUT

(15)
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V RTN+«UNTERMINATE A

[1] W< (p4):2
[2] ZIN<N*A
[3] 2L<N+A
[4] AT<(+/ZIN)sN
51  AL<(+/2L)3N
[6]  ALI«(+/ZLxZIN)+N
[7] VI«(+/(VZIN-AI)%2)N
[8)  VL«(+/(lZL-AL)*2):N
[9]  VLI<(+/(2L-AL)*CC(ZIN-AI))sN
[10] VLIL+(+/((2L%ZIN)~ALI)xCC(ZL~AL)) N
[11] VLII«(+/((2L*2IN)-ALI)XCC(ZIN-AI))+N
[12] DENOM<«(VLxVI)=(|VLI)}*2
[23] 221«((VIXVLIL)-VLIIxXCC VLI):DENOM
[14]  222«((VLI®VLIL)-VLxVLII):DENOM
[1S] DELTAZ«ALI+(Z22xAI)~Z11xAL
[16] RTN<«211,222,DELTAZ
v
Y RTN<UNT A
[1]  N«(p4)s2
[2] ZIN<N+A
£3l ZL+NYA
[u] ALPHA«ZLXZIN
[5] BETA«ZL,(-2IN),[2,5] 1
[6] RTN<ALPHABBETA

v

Fig. 6. Two algorithms to calculate Z11, Z22, and Az from Ziy and
Z1, values. The algorithms are intended for exposition, but can
actually be executed if all Z; and Zin are real. In this case the
complex-conjugate indicated by CC is not necessary. The argu-
ment A is a vector containing the N values of Zix and the N
values of Zr, which are extracted in lines [1]-[3]. In APL the sum
of all elements of a vector V is denoted by +4/V; * denotes ex-
ponentiation; | denotes magnitude; and « is used for specification.
The function unterminate carries out in detail the calculations.
The function UNT is a simplified version that does the same thing,
making use of the APL matrix-inverse primitive function F,
which automatically finds a least square approximation solution
to a set of overdetermined linear equations. Both functions pro-
duce the same result.

V RTN<FORS A

11 Ne(pA)s2

[2] MEAS<N*A

L3] LOADS+N+A

sl RTN«MEAS,-1+LOADS

v

Fig. 7. A function to precondition reflection-coeflicient data so that
the functions UNT and UNTERMINATE can be used.

which has the same form as (1) provided Ziy is replaced
by —Zg, and Z1, by —Zour. In fact, any combination of
input and output measurements can be used.

Certain known facts about the embedding network can
be incorporated in order to reduce the amount of measured
data required. Two important practical cases are con-
sidered here, symmetry and losslessness.

For symmetric networks, Z;; = Z,; and hence (7) be-
comes

Zu(Zri — Zine) + Az — ZpiZiw: = €. (16)

At least two measurements are necessary, and if more than
two exist, then the vector p’
p = [Zun Bz]

is found by solving (10), where now B*'B and B*« are
smaller:

N N
ol Zy — Zwei P 2 (Zrs ~ Ziwa)*
=1 =1

B*'B = 17)

N .
Z (ZLz - ZINi) N
=1
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N .
> ZwiZri(Zri — Ziwi)*
=1

Bra = (18)

N N
Z ZLiZINi

=1

For lossless networks, Zi = jXu and Zy, = X2 and Az is
real. Hence (7) can be split apart into a real and an imagi-
nary part:

—XuXr; + XooX1n: + Az — Re Z1iZivi = Re ¢
XuRr: — XeoRiv: — I Z1:Z1n; = Tm e, (19)

At least two general measurements are necessary (three
if reactive loads are used), and if more exist, then the real
vector p’ '

P' = [Xu Xoo AZ]

is found by solving (10), where now B*'B and B*'a are
N

22 |2
=1

N
- Z Re Z1:Zn:*

2=1

B*B =

N
- Z XLi
=1

[ ]
> Im | Z: |22

i=1

N
— > Im | Zw |22y

=1

Bra =

N
Z Re Z1:.Zn:

E J

VIII. ExamMPLE

In this section the unterminating procedure is il-
lustrated by determining the impedance seen by the active
region (the avalanche and drift regions) of an rmparTT
diode. The diode is mounted as shown in Fig. 8 in a re-
flection amplifier circuit designed for operation at 37
GHz.

The reflection coefficient referred to the transformer—
waveguide interface was taken as the input measurement.
The junction capacitance of the diode for various bias
voltages was used as the set of reference loads. Thus the
embedding network includes the waveguide transformer,
the reduced-height waveguide, the bias line, the back-
short and mounting cavity, the diode package, and even a
portion of the semiconductor.

As pointed out by Steinbrecher and Peterson [37], the
depletion-layer capacitance should be independent of
frequency well into the microwave region because of the
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Fig.8. Cut-away view of a 37-GHz mupATT diode reflection amplifier
: circuit. ' :

N N 7
- 2 Re Zp*Z: — Z X
i=1 i=1
N N
2| Zi > X (20)
=1 i=1 ’
N
> X N
i1
(21)

small physical size of the junction and thus can be de-
termined from measurements at much lower frequencies
using a conventional capacitance bridge. o ‘

The microwave measurement of the input reflection
coefficient was made with a slotted line. Eight measure-
ments, corresponding to eight different bias voltages,
were made. The data presented here are for measure-
ments made at 37 GHaz. ‘

The estimated value of Zour using all eight of the
measurements to predict the network parameters was
24.3 + 731.8 Q. To show the possible error, the predicted
values of Zoyr using three measurements at a time are
shown in Fig. 9. The mean and standard deviation of the
estimated Zour obtained by taking the measurement
pairs 3-8 at a time are plotted in Fig.  10. This plot
illustrates the decrease in the uncertainty associated with
the estimated Zour as the number of measurements is
increased. ’ '
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Fig. 9. Output impedances of the 56 different characterizations of
the reflection amplifier obtained by using only 3 measurements at
a time from the set of 8.

IX. ConcrLusioNs

A practical procedure has been shown for unterminating
that makes effective use of more than the minimum
number of measurements. The technique as presented
applies to two-port embedding networks, with equal
weightings on all measurements.

The extension to multiport embedding networks is
probably straightforward. This would be required, for
example, in coupling to a two-port device such as a tran-
sistor as deseribed by Calahan [6].

Unequal weightings can easily be incorporated in the
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Fig. 10. Mean and standard deviation of the predicted output
impedances obtained by taking 3-8 measurements at a time.

procedure, if desired. It is only necessary to multiply the
appropriate elements of a and the appropriate rows of B
by the desired weighting factors.
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