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Iv.

Useful oscillographic

CONCLUSIONS

response plots of a microwave—
network have been obtained by computer simulation,

using frequency-domain data measured with a cornputer-

ccmtrolled network analyzer. The technique has a short

time resolution, is highly sensitive, and.provides quan-

titative results useful in a variety of ways. A major ap-

plication is in the analysis of impedance data at the input

of transmission networks, where it serves as a quanti-

tatively interpretable time-domain reflectometer. It may

also be used to measure small reflection coefficients of
individual parts of multiple-section networks, wlich are

physically inseparable both in the time domain and the

frequency domain.

[1]

[2]

[3]

[4]

REFERENCES

D. L. Hollway, “The comparison reflectometer,” IEEE Trans.
Microwave Theory Tech., vol. MTT-15, pp. 250-259, Apr. 1967.
P. I. Somlo, “The locating reflectometer,” IEEE Tram. Micr-o-
wave Theory Tech., vol. MTT-20, pp. 105–112, Feb. 1972.
L. A. Robinson, W. B. Weir, and L.” Young, “An RF time-
domain reflectometer not in real time,” IEEE Trans. Micro-
wave Theory Tech. (19722 ~ymposium’ Issue), vol. MTT-20, pp.
855-857, Dec. 1972.
A. M. Nkolson. C. L. Bennett. Jr.. D. Lamensdorf. and L.
Susmani “Appli&tions of’ time-domain metrology to tke auto-
mation of broad-band microwave measurements,” IEEE Tram.
Microwave Theory Tech. (i3pecial Issue on Automated Microwave
Measurements), vol. MTT-20, pp. 3-9, Jan. 1972.

De-Embedding and Unterminating

RONALD ~. BAUER, MEMBER, IEEE, AND PAUL PENFIELD, JR., FELLOW, IEEE

Afmfnrcf—De-embedding is the process of deducing the im-

pedance of a device under test from measqrernents made at a dis-

tance, when we electrical properties’ Qf the intervening structure

are known. Untermin’sting is the process of deducing the electrical

properties of the intervening structure from a seriesof measurements .ea,,,:&=

with knqwn embedded devices. “The mathematical steps necessary Fig. 1.
for de-e~bedding and unterminating are reviewed, and a technique

Normal measurement situation. Characteristics of the
device und~r test can only be measured as they appear outside

is presented for unterminating with theoretically redundant meas- the embeddmg network WE.

weme~ts in order to minimize the effect of experimental errors.

I. INTRODUCTION

AT microwave frequencies it is often impossible to

directly measure the impedance (or admittance or

reflection coefficient) of devices such as diodes or transis-

tors. Instead, measurements are made at, and referred to,

some reference plane physically removed from the device.

The device is then said to be “embedded” in the inter-

vening structure. If the device under test is a two-terminal

device, then the !’embedding network” may usefully be

regarded as a two-port network ~E, with the measurement

plane at the input and the device under teet terminating

the output. This is shown in Fig. 1.

A related problem is that of characterizing, for a working
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circuit, the region surrounding a device such as a diode.

For example, one might wish to know the impedance seen

by the diode, or the coupling between the diode and the

circuit input or output. It is often impossible to make

measurements at the physical location of the device, so

what is needed is a characterization of the structure be-

tween the device and a convenient measurement plane.

Again it is useful to consider the device as ‘(embedded” in

the intervening structure, which in the case of a diode may

be regarded as a two-port network %E. Fig. 1 is again

relevant.

To fix ideas in thk paper, we shall consider mainly

impedance (instead of admittance or reflection coef-

ficient) measurements, and call’ the device under test a

“diode.”

There are two distinct problems. One is, given the

measured impedance at the input of the two-port network,

to deduce the impedance of the diode. This process,

known as “de-embedding,” is straightforward, once the

embedding network is known, and is discussed in Section

II. The other more difficult problem is to characterize “the



BAUER AND PENFIELD: DE-EMBEDDING AND UNTERMINATING 283

embedding network f)tE experimentally from measure-

ments. Because measurements at the output of 3tE are

impossible, this characterization must be done from

measurements of input impedance alone, made when ~E

is terminated by known loads at the output. The process,

knowD as ‘ ‘unterminating, ” is discussed in Sections
III-VIII.

II. DE-EMBEDDING

The de-embedding procedure is straightforward, pro-

tided the embedding network is known. Let us suppose

a load with unknown impedance ZL terminates the output

of the embedding network, and the resulting input im-

pedance ZI~ is measured.

One direct way to de-embed is to solve the well-known

formula for input impedance

212221
ZIN = .ZII –

222 + ZL

for the unknown ZL:

Z12Z2,
ZL = – 2,2.

211 – ZIN

(1)

Similar formulas can easily be derived for admittance or

reflection coefficient.

A convenient way to view the process is to imagine the

original network WE, as terminated, forming the termin-

ation of a hypothetical two-port network %1, as in Fig. 2.

If %1 is the inverse of %E with respect to cascading, then

the resulting input impedance is equal to Z~. This inverse

network is easily found if WE is known. In terms of the

ABCD parameters, %1 has an ABCD matrix equal to the

matrix inverse of the ABCD matrix of xE. The impedance

matrix of %1 is found by multiplying by — 1 and replacing

subscripts 1 by 2 and vice versa. In MARTHA notation [1],

if the original embedding network is denoted NE, then

XT iS ( — 1) ZSCALE WN NE.

III. U~TERMINATING

In principle there are many ways of characterizing the

two-port embedding network. In practice the most

common are: (1) a lumped and/or distributed equivalent

circuit; (2) analytical expressions for the two-port

parameters, perhaps found through solving Maxwell’s

equations; (3) analytical or polynomial approximations

for the two-port parameters; (4) measured numerical

Original
Network

I
Z,n * ZL

I
‘L

F&. 2. When X1 is the cascade inverse of the embedding network
~& then the input impedance is the device impedance.

values for the two-port parameters, typically in the form

of a table with entries at several frequencies; and (5)

two or more such networks wired together.

In this paper we discuss a technique, known as “un-

terminating,” to deduce numerical values for the two-port

parameters from measurements made solely at the input

of the embedding network. This technique has both theo-

retical and practical limitations. A technique is described

for utilizing theoretically redundant information to

improve accuracy. A similar approach, but restricted

to the case where the variable load impedance is purely

reactive, was used by Kaj fez [2], who was particularly

interested in the de-embedding of varactors. It should be

noted that when (as in the case considered by Kaj fez)

the variable load is reactive, the locus of input impedance

is a circle in the complex plane, whereas in the general case

(considered here) the locus need not be a circle. Thus this

technique is applicable in cases where “eyeball” fitting of a

circle is not a possible technique.

IV. THEORETICAL BASIS AND FUNDAMENTAL LIMITATIONS

To fix ideas consider the impedance matrix of the

embedding network ~Ej with elements 211, 212, Z?l, and

Zzz. The network need not be Iossless, passive, or reciprocal.

The technique for unterminating is based on (1), which

can also be written as

& =
AZ + ZIIZL
222+ Z.L (3)

where AZ = 211222 – ZIZZZ1. The unterminating pro-

cedure is to measure ZIN as a function of frcquenc~r for a

set of known load impedances ZL, and then deduce

Zll, 222, and Az. Two or fewer measurements are in-

sufficient; three independent measurements are necessary

and sufficient; and four or more measurements are re-

dundant. It is a simple algebraic task to find explicit

formulas for Zl~, 222, and AZ from (3) for three inde-

pendent pairs (ZINI, ZL1), (ZIN2, zL~), and (ZIN3, ZL3).

However, use of these formulas is TLOt recommended since

it is difficult to avoid the effects of experimental errors.

A technique to utilize redundant measurements to reduce

experimental error is discussed in Section VI.

Although a two-port network has four elements in its

impedance matrix, the two elements Zlz and Z~~ appear in

(1) only in the form of the product ZIZZZ1. Driving-point

measurements of a terminated two-port network are

inherently incapable of determining separately ZIZ and

Zzl. If WE is known to be reciprocal, then Z12 = Z?l and,

except for a sign ambiguity, 212 and Z21 can be determined.

The physical effect of this sign ambiguity is illustrated in

Fig. 3. If one choice of sign corresponds to a network X,

then the other choice corresponds to the network %

cascaded with a polarity reverser. It is obvious that these

two networks cannot be distinguished on the basis of

driving-point measurements.

On the other hand, if the embedding network is non-

reciprocal, not even the magnitudes of 212 and 221 can be
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-rl-’ --rl-%-
-u_l-- -LJ%-’

Transformer

Fig.3. Effect of sign ambiguity in Zl, and Zjl, ifonly the product
2,2221 is known. Both of the networks above are reciprocal, but
differ in the sign of 212 and 221.

determined without some assumption. Fortunately, how-

ever, the inherent impossibility y of finding separately 212

and 221 does not affect the use of the resulting network

for de-embedding or determining output impedance, as

can be seen from ZL expressed in terms of ZIN, and ZOUT

expressed in terms of the generator impedance ZG:

– AZ + .2&&
ZL = – 222 + Z,::Z:lN=

Zll —ZIN
(4)

212221 =Zmp = 222–
AZ + 2,,2G

z,, + ZG z,, + ZG “
(5)

In both forms only the product Z1.2ZZIappears. This means

that any choice of 212 and 221 such that their product is

correct, is adequate. It is usually convenient to choose

Z12 = 221 even for nonreciprocal networks, and to choose

the sign resulting from the square root arbitrarily. This

means that (even for reciprocal networks) the resulting

network is, or may be, wrong, but in such a way that de-

embedding or determining the output impedance is still

possible.

This technique requires knowledge of the loads at the

time the input measurements are made. An important

limitation of the procedure is the fact that the supposedly

known loads often cannot be directly measured. Naturally,

the success of the unterminating operation is only as good

as the knowledge of the load impedances. For example,

taking values for the set of load impedances that are

consistently in error by an additive constant will intro-

duce a fictitious element in series with the output port of

the network defined by the untermination process. A set

of load impedances consistently in error by a multi-

plicative constant will introduce a fictitious ideal trans-

former across the output port. In some cases there is no

particular problem in determining the impedance of the

reference loads (for example, using the back-bias capaci-

tances of a diode, which are assumed to be the same as the

capacitances measured as a lower frequency [3]). In

other cases, however, some modeling effort must be taken

(for example, substituting for a diode package a series of

dielectric or conductive pieces with the same shape [4]),

and care must be exercised in selecting the reference loads

in order to preserve the desired bilinear relation between

ZIN and ZL[5].

V. EFFECT OF EXPERIMENTAL ERROR

It was stated above that three input measurements are

necessary and sufficient for deducing the embedding net-

work. However, when only three measurements are used,

the technique is subject to difficulties arising from ex-

30+jm

150+ j150

Fig. 4. Example embedding network. ZII = zoo + ~lzo, 222 =
180 + j160, Z,, = 221= 150 + j150, Az = 16800 + ~8600.

TABLE I
INPUIr IMPEDANCES ZIN OF THE EXAMPLE EMBEDDING NETWORK

FIG. 4 WHEN TERMINATED WITH R=FERENCE JJOADS .ZLAND
INPUT IMPEDANCES AFTER ADDING NOISE

‘L
Red

10

25

75

100

0

00

50

50

0

0

0

0

50

-50

50

-50

ZTN I ‘IN
+ Noise-.

Seal Imag. Real

S3.31 -18.57 82.58

93.53 -16.41 93.45

lZO.6 -6.621 120

130.8 1.154 131.1

76.47 14.lZ 77.34

88.76 -62.OZ 88.8

102.6 13.3 101.6

123.8 -39.23 ,1 1Z3.9

hag .

-18.05

-16.34

- 7.521

- 0. 793s

13.s9

-61.35

12.41

-38.8S

perimental error. The following simulated example shows

how important such considerations are.

The network shown in Fig. 4 was used as the embedding

network. The input impedance was calculated at one

frequency for eight different loads, namely, resistances of

10,25, 75, and 100 fl, reactance equal to j50 and –j50 f?,

and impedances of 50 + j50 and 50 — j50 0, To simulate

experimental error each input impedance was perturbed
by adding an independent random resistance and random

reactance of maximum magnitude 1. The resulting

“noisy measurements” are shown in Table I. For sim-

plicity the eight load impedances were assumed to be

known exactly.

Any three of the eight pairs of ZL and ‘(measured”

Z1~ can be selected for unterminating. Since there are 56

ways of selecting 3 objects from a set of 8, there are 56

different approximations of the embedding network.

Each of these was used to de-embed the input impedance

108.3 – jl 1.85 Q (which is the actual result of a 50-C?

load). The 56 resulting estimates of the load impedance

~h are shown in Fig. 5. The scatter indicates the extent

of the error introduced by measurement errors of less than

1 fl. In a practical case it would not be evident which (if

any) of the 56 resulting networks was best.

What is needed is some way of averaging over the extra

measurements in order to improve the accuracy of the

embedding network characterization. In Section VI such a

technique is discussed. As a preview, the effect of using

this technique is shown in Table II. The mean and

standard deviation are given for the 56 load impedances

predicted using the embedding networks derived by taking

3 measurements at a time, the 70 predictions derived by

taking 4 out of the 8 measurements, the 56 predictions

based on 5 measurements, the 28 predictions based on 6
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each of the N measurement–load pairs

Z1lZLi — Z22Z1Ni + AZ — ZL.iZINi = ci,

(~ = 1,2,3, . . .. N). (7)

An estimate of the network parameters can be obtained

by choosing ZU, Zp,, and AZ to minimize the squared

magnitudes of all expressions like (7). That is, the func-
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is to be minimized.

This problem can be expressed in matrix form as

(8)

(9)-2 I . I I I I
48 49 50 51 52 53 54

pp–a=c

where
Re ~L (ohms)

Fig. 5. Plot of the load impedances obtained by de-embedding the
input impedance 108.3 — jl 1.8 Q (ZI~ of the network in Fig. 4
terminated in Z~ = 50) using the 56 different descriptions of the
embedding network obtained using 3 noisy measurements at a
tzrne from a set of 8.

P’ = [ZII 222 Az]

d z [ZLIZINI ZL2Z1N2 . . s ZLNZINN]

TABLE II
AVERAGE AND STANDARD DEVIATION OF LOAD IMPEDANCES OBTAINED

BY DE-EMBEDDING INPUT IMPEDANCE 108.3 — jl 1.8 f?, USING

EMBEDDING ~ETWORKS OBTAINED USING N NOISY

MEASUREMENTS AT A TIME FROM A SET OF EIGHT

.2?L’ –Z1N2 1
p=

Average Standard Wiat ion

N ReZL lm ZL R? ZL lm ZL

3 50.80
I

.2116 1.199 1.1

4 I 50’3 I 0’08 I I0.7046 0.646Z
Then choosing for i, the parameter estimator, the value of

# that minimizes E’t” gives
5 [ 50.s1 I .01328 I 0.5576 I 0.4175

6 I 50.42 I -.0074620.4303
I

0.2525

(lo)7 } 50.35 / -.02279 ] 0.2883 I 0.1167

8 I ’030 -.03362
I

where

FN N

measurements, the 8 predictions based on 7 measure-

ments, and the 1 prediction based on all 8 measurements.

It is apparent that as more measurements are used, the

scatter decreases and the prediction of the load im-

pedance becomes better.

N

—

VI. RECOMMENDED UNTERMINATION PROCEDURE N

The procedure for unterrninating presented here makes

use of all pairs of measurements and loads, with equal

weighting of importance (although it can easily be

modhied to any desired unequal weighting). It is based on

the minimization of an error expression to obtain estimates

of the network parameters Zll, Z“, and Az. An error ex-

pression that is quadratic in these parameters is used in

order to obtain explicit minimization formulas.

The error expression is derived by rearranging (3) to

obtain a linear equation in ZW Zsz, and AZ:

‘,=1

(11)

Z1lZL – Z22Z1N + AZ – ZLZIN = O. (6)

For any particular measurement–load pair, (6) will differ

from O by an amount ~i due to measurement errors in
Z~Ni and/or uncertainty about the value of Zh%. Thus for

N

x ZLZZIN,

i-l
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Two algorithms for computing .%1, 22.2, and ~Z are

shown in F3g. 6. They are written in the language APL

and are intended for illustration only, although they can

actually be executed for real load and input impedances

(in that case the complex’ conjugate function CC is by-

passed). Practical programs based on the algorithms in

Fig. 6 are possible, but would be unnecessarily slow. It is

a simple matter to devise alternate algorithms that are

not as well suited for exposition, but better suited for

actual calculations.

Our goal, however, is not just to estimate the network

parameters. We would like to use them to estimate the

expected value of ZL from additional, or future, observa-

tions of Z1~, or to estimate the expected value of Zovr.

The equations for ZL and ZOUT, (4) and (5), are nonlinear

in the network parameters. Thus they will not be un-

biased estimators. However, if the network parameters

are known with a small enough variance the bias in the

estimate of ZL or ZouT should be small. An example of the

use of this procedure is given in Section VIII.

VII. EXTENSIONS

This technique is also applicable to instances involving

admittance and reflection coefficient. Indeed, the input

admittance YIN as a function of the load admittance

Y~ and admittance matrix is

YIN = Yll –
Y12Y21

Y,, + YL “
(13)

This has exactly the same form as (1), and therefore the

same procedure can be used without modification. In

particular, if measured YIN and YL values are used as an

argument for the function UNT in Fig. 6, the function will

return the vector Yll, Y22, Ay.

The extension to reflection coefficients is almost as easy.

The input reflection coefficient rlN in terms of the load

reflection coefficient rL, and scattering matrix S is

&2s21
rIN = 8U –

& – l/rL.
(14)

which has a form similar to (1) except that — 1/ rL

appears instead of ZL. Thus the same function UNT can

be used with reflection coefficient data provided that

instead of ZL, — 1/ rL is used. The data are probably most

easily arranged as a vector of rlN and rL, but it is a simple

matter to write a function such as FORS in Fig. 7 that can
be used to precondition the argument. Then, if the

vector DATA contains rl~ and rL numbers, UNT FORS

DATA will return a vector containing the scattering-

matrix values Sll, Sz~, and A,s. In the example in Section

VIII, reflection coefficient data were actually used.

It is also possible to make use of data, if any, of output

impedance (or admittance or reflection coefficient) for a

given impedance ZG terminating the input. This is because

the output-impedance formula (5) can be transformed into

the form

( –z.) = z,, – J::OUT (15)

v

[11
[21
[31
[41
[51
[61
[71
[81
[91
[101
[111
[121
[131
[141
[151
[161

v

v
[11
[21
[31
[41
[51
[61

v

RTW-UNTERMINA TE A
N+(PA )+2
ZIN+NtA
ZL+N4A
AI+(+/ZIN)+N
AL+(+/ZL)*N

ALI+(+/ZLXZIJ()*N
rr+(+/( IZIN-AI)*2)$N

vL+(+/( lzL-AL)*2)+N

VLr+(t/(ZL-AL )XCC(ZIN-AI))+N
VLIL+(+/( (ZLx ZIN)-ALI) XCC(ZL-AL))*N
VLII+(+/( (ZLXZIN )-ALI)XCC( ZIN-AI))*IV
DENOM+( VLXVI)-( I VLI)*2
Zll+( (VIXVLIL )- VLIIXCC VLI)+DENOM

Z22+( (VLIXVLIL )- VLXVLII)$DENOM
DEL TAZ+ALI+( Z22XAI)-ZII.AL
RTN+ZII , Z22 ,DELTAZ

RTN+UNT A
N+(pA)t2
ZIN+N+A
ZL+N+A

ALPHA*ZL X ZIN

BETA+ ZL, (- ZIN), [I,51 1
RTWALPRAWBETA

Fig. 6. Two algorithms to calculate 211, Z22, and Az f~om ZIN and
ZL values. The algorithms are intended for expositlo~, but can
actually be executed if all ZL and ZIN are real. In this case the
complex-conjugate indicated by CC is not necessary. The argu-
ment A is a vector containing the N values of ZIN and the N

values of ZL, which are eztracted in lines [1]–[3]. In APL the sum
of all elements of a vector V is denoted by +/V; * denotes ex-
ponentiation; I denotes magnitude; and ~ is used for specification.
The function unterminated carries out m detail the calculations.
The function UNT is a simplified version that does the same thing,
making use of the APL matrix-inverse primitive function ❑ ,
which automatically finds a least square approximation solution
to a set of overdetermined linear equations. Both functions pro-
duce the same result.

V R!TN~PORS A

[11 N+(pA )*2

[21 MEA S+N+A

[31 LOADS+N4A
L41 RTN+NEAs, -1 *LOADS

v

Fig. 7. A function to precondition reflection-coefficient data so that
the functions UNT and Unterminated can be used.

which has the same form as (1) provided ZIN is replaced

by –ZG, and ZL by –ZoU,. In fact, any combination of

input and output measurements can be used.

Certain known facts about the embedding network can

be incorporated in order to reduce the amount of measured

data required. Two important practical cases are con-

sidered here, symmetry and losslessness.

For symmetric networks, Z,, = 2,2 and hence (7) be-

comes

Zll(ZLi – ZINi) + Az – ZLiZINi = Q (16)

At least two measurements are necessary, and if more than

two exist, then the vector p’

p’ = [.%, Az]

is found by solving (10), where now P*’ $ and p*’a are

smaller:

[

f I ZL, – Z,N, [2 5 (ZL, – ZINi)”
i=l ‘i=I

fj*lp = 1(17)
N

N I
_l
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! 1
WR 28 Low - Pass

3 ZIN4Li (2Li – ZINi) *

i=l
fpcla = (18)

~ ZL,.&l,
i=l

For lossless networks, 2,1 = jXU and 222 = jX2z and Az is

real. Hence (7) can be split apart into a real and an imagi-

nary part:

—X1lXLi + XzzX~N~ + Az – Re ZL~ZIN; = Re G

XJi?Li – XZZRINi — Im ZLtZINi = Im c;. (19)

At least two general measurements are necessary (three

if reactive loads are used), and if more exist, then the real

vector p’

$’ = [XII X22 Az]
Fig. 8. Cut-away view of a 37-GHz IMPATT diode reflection amplifier

is found by solving (10), where now $*’P and ~*’ct are circuit.

VIII. EXAMPLE

In this section the unterminating procedure is il-

lustrated by determining the impedance seen by the active

region (the avalanche and drift regions) of an IMPATT

diode. The diode is mounted as shown in Fig. 8 in a re-

flection amplifier circuit designed for operation at 37

GHz.

The reflection coefficient referred to the transformer–

waveguide interface was taken as the input measurement.

The junction capacitance of the diode for various bias

voltages was used as the set of reference loads, Thus the

embedding network includes the waveguide transformer,

the reduced-height waveguide, the bias line, the back-

short and mounting cavity, the diode package, and even a

portion of the semiconductor.

As pointed out by Steinbrecher and Peterson [3], the

depletion-layer capacitance should be independent of
frequency well into the microwave region because of the

small physical size of the junction and thus can be de-

termined from measurements at much lower frequencies

using a conventional capacitance bridge.

The microwave measurement of the input reflection

coefficient was made with a slotted line. Eight measure-

ments, corresponding to eight cliff erent bias voltages,

were made. The data presented here are for measure-

ments made at 37 GHz.

The estimated value of ZOUT using all eight of the

measurements to predict the network parameters was

24.3 + j31.8 ft. To show the possible error, the predicted

values of ZouT using three measurements at a time are

shown in Fig. 9. The mean and standard deviation of the

estimated ZOUT obtained by taking the measurement

pairs 3-8 at a time are plotted in Fig. 10. This plot

illustrates the decrease in the uncertainty associated with

the estimated ZOUT as the number of measurements is

increased.
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E 10
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F
I

‘~ .
–lo

.
0 10 20 30

J.

Re Zou+ (ohms)

Fig: 10. Mean and standard deviation of the pre&cted output
mwedances obtained by taking 3-8 measurements at a time.

Re Zou+ (ohms)

Fig. 9. Output impedances of the 56 different characterizations of
the reflection amplifier obtained by using only 3 measurements at

procedure, if desired. It is only necessary to multiply the

a time from the set of 8. appropriate elements of a and the appropriate rows of P

by the desired weighting factors.

IX. CONCLUSIONS [1]

A practical procedure has been shown for unterminating 121

that makes effective use of more than the minimum

number of measurements. The technique as presented [3]

applies to two-port embedding networks, with equal

weighings on all measurements.

The extension to multiport embedding networks is
[4]

probably straightforward. This would be required, for ,51

example, in coupling to a two-port device such as a tran-

sistor as described by Calahan [6].

Unequal weighings can easily be incorporated in the
[6]
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